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FINAL REPORT

AFOSR Grant # FA9550-08-1-0097

MULTI-SCALE COMPLEXITY IN LINEAR DISPERSIVE
PULSE PROPAGATION PHENOMENA

Kurt E. Oughstun, Principle Investigator
School of Engineering

College of Engineering & Mathematical Sciences
University of Vermont

(February 2011)

1 Research Objectives

The classical asymptotic description of dispersive pulse propagation, initiated by
Arnold Sommerfeld [1] and Leon Brillouin [2, 3] in 1914 using the then newly de-
veloped method of steepest descent due to Debye [4], and more recently completed
by Oughstun & Sherman [5, 6, 7], Oughstun [8, 9], and Cartwright & Oughstun [10]
using modern, uniform asymptotic expansion techniques, has provided an accurate
mathematical description of ultrawideband pulse propagation in causally dispersive
dielectrics and conducting media. The accuracy of this asymptotic description in-
creases monotonically as the propagation distance z increases above some character-
istic distance zd set by the material dispersion, typically given by the e−1 penetration
depth at some oscillation frequency characteristic of the input pulse. This asymp-
totic description has also resulted in a simple physical description of dispersive pulse
dynamics [11, 12] based upon the energy transport velocity [8, 13] and attenuation of
a time-harmonic electromagnetic plane wave in the dispersive medium that reduces
to the approximate group velocity description in a specific limit of vanishing loss (the
limit in which the group velocity approximation is valid). What remains to be done
in order to complete this mathematically rigorous theory of dispersive pulse propa-
gation is the development of a physical description of the precursor field formation
at the molecular level, as it is there that the origin of the material dispersion occurs
and the precursor field formation first appears. Associated with this problem is the
correct physical description of dispersive pulse propagation in the immature disper-
sion regime where the precursor formation occurs. Although it has been asserted that
the group velocity description would provide this near-field description, the research
conducted in this grant has shown that this is is not necessarily true. These two
related problems formed the focus of this research grant.
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2 Research Results

A molecular theory of optics was originally developed by M. Born [14], L. Rosenfeld
[15], and É. Lalor & E. Wolf [16]; a simpler asymptotic description of molecular optics
may be found in the essential optics text [17] by M. Born & E. Wolf. This classical
theory of molecular optics leads to the fundamentally important Ewald-Oseen extinc-
tion theorem which shows that a time-harmonic electromagnetic wave incident upon
a dielectric interface initially penetrates into the medium undisturbed, exciting the
molecules that comprise the medium which, in turn, produce a scattered wave field
that extinguishes (through destructive interference) the incident plane wave field and
constructs the refracted plane wave field. This analysis thus reveals the fundamental
physical processes involved in the refraction of light at a dielectric interface. How-
ever, this analysis has only been completed for the special case of a time-harmonic
electromagnetic wave. The extension of this theory of molecular optics to the time-
dependent case was initiated in this grant with particular attention given to the
ultrawideband signal, ultrashort pulse regime so as to reveal the fundamental phys-
ical processes involved in the precursor field formation over the initial penetration
into the Lorentz-type dispersive half-space. Because the precursor fields are due to
the intricate interplay between the phase delay dispersion c/vp(ω) = nr(ω) and the
attenuation dispersion α(ω) = (ω/c)ni(ω) of the dielectric medium, where the real
nr(ω) ≡ ℜ{n(ω)} and imaginary ni(ω) ≡ ℑ{n(ω)} parts of the complex index of

refraction n(ω) = [(ǫ(ω)/ǫ0) (µ/µ0)]
1/2 are interrelated through the appropriate dis-

persion relations required by causality [8, 18], they are an example of an emergent
physical process and, as such, they present an important example of multi-scale com-
plexity.

2.1 Integral Equation Representation of Electromagnetic

Pulse Propagation in Dispersive Molecular Optics

Consider the propagation of an electromagnetic wave in a homogeneous, isotropic,
nonmagnetic medium comprised of molecules that react to an incident field like ideal
point dipoles. The electric and magnetic field vectors E′

j(r, t) and H′
j(r, t) which

act on the jth molecular dipole in the interior of the medium can then be formally
separated into the superposition of the incident electromagnetic field vectors Ei(r, t)
and Hi(r, t) that are propagating as if they were in vacuum with phase velocity c
and the contribution arising from all of the other molecular dipoles in the medium,
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so that

E′

j(r, t) = Ei(r, t) +
∑

ℓ

Ejℓ(r, t), (1)

H′

j(r, t) = Hi(r, t) +
∑

ℓ

Hjℓ(r, t), (2)

with ℓ 6= j. At the point rj where the j
th dipole is situated, the field of the ℓth dipole

is given by the pair of expressions [17] (in cgs units)

Ejℓ(r, t) = ∇×∇×
pℓ(t− Rjℓ/c)

Rjℓ
, (3)

Hjℓ(r, t) =
1

c
∇×

ṗℓ(t− Rjℓ/c)

Rjℓ
, (4)

where pℓ(t) is the moment of the ℓth dipole, Rjℓ ≡ |rj − rℓ|, and where the spatial
differentiation is taken with respect to the coordinates (xj , yj, zj) of the jth dipole.

The following simplifying, but not compromising, approximations are now made:

1. first, the spatial distribution of the molecular dipoles comprising the dielectric
medium is treated as continuous so that pℓ(t) → p(r, t);

2. and second, the number density N (r) of dipolar molecules is assumed to be a
constant N in the material body and zero outside.

For a homogeneous, isotropic, locally linear dielectric exhibiting temporal dispersion,
the total electric dipole moment per unit volume (macroscopic polarization density)
is given by [8]

P(r, t) = N

∫ t

−∞

α̂(t− t′)E′(r, t′)dt′, (5)

where E′(r, t) is a spatial average of the effective local electric field intensity E′

j(r, t
′).

For a causal medium response, Titchmarsh’s theorem [8, 18] requires that α̂(t−t′) = 0
for all t′ > t, in which case the upper limit of integration may be extended to +∞.
The temporal Fourier transform of the resulting convolution relation then yields

P̃(r, ω) = Nα(ω)Ẽ′(r, ω), (6)

where α(ω) =
∫

∞

−∞
α̂(t)eiωtdt is the mean molecular polarizability of the dielectric

medium1. This molecular polarizability characterizes the frequency-dependent linear
response of the molecules comprising the dielectric body to the applied electric field

1The term “mean” used here indicates a spatial average over molecular sites; see §4.4.1 of [8].
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(see Appendix D of [8]). Notice that the ‘simple’ linear relation expressed in Eqs. (5)
and (6) may be generalized to include spatial inhomogeneity by letting N → N (r)
as well as anisotropy by generalizing the scalar quantity α to dyadic form. Spatial
dispersion may also be included by removing the condition imposed by spatial locality
in a generalized version of Eq. (5) by letting α̂(t) → α̂(r− r′, t− t′). For the current
proposal, only a ‘simple’ linear, causally dispersive dielectric is considered.

Upon going over to a continuous distribution of the molecular dipoles in the dielectric
medium, Eqs. (1)–(2) become, with substitution from Eqs. (3)–(4),

E′(r, t) = Ei(r, t) +

∫

∇×∇×

[
N

R

∫ t

−∞

α̂(t− t′)E′(r′, t− R/c)dt′
]

d3r′,

(7)

H′(r, t) = Hi(r, t) +
1

c

∫

∇×

[
N

R

∫ t

−∞

α̂(t− t′)Ė′(r′, t−R/c)dt′
]

d3r′,

(8)

where R ≡ |r − r′|, and where the indicated spatial differentiations are taken with
respect to the unprimed coordinates (x, y, z) of the field point r. If the point of
observation (or field point) r is outside the dielectric medium, then the integration is
taken throughout the entire space occupied by the medium. However, if it is inside
the medium, then a small domain D∆ occupied by the molecule at that observation
point must be excluded from the integration domain. As a matter of course, one then
takes the limit as D∆ → 0 after the analysis has been completed.

Equation (7) is an integro-differential equation for the electric field vector E′(r, t).
When it is solved, the magnetic intensity vector H′(r, t) associated with that electro-
magnetic wave field is then obtained from Eq. (8). This pair of relations is essentially
equivalent to Maxwell’s equations for homogeneous, isotropic, locally linear, nonmag-
netic materials that exhibit temporal dispersion. Their solution has been obtained
[14, 15, 16] for the special case when the incident wave field is strictly monochromatic
with angular frequency ω, in which case the mean polarizability may be treated as a
constant with α̂ = αδ(t− t′).

When the incident electromagnetic wave is pulsed, and especially when it is ultraw-
ideband with respect to the material dispersion, special care must be taken in solving
Eqs. (7)–(8). These integro-differential equations are somewhat simplified in the tem-
poral frequency domain obtained by taking the temporal Fourier-Laplace transform
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of these relations, with the result

Ẽ′(r, ω) = Ẽi(r, ω) +Nα(ω)

∫

∇×∇×

[

Ẽ′(r′, ω)
eiωR/c

R

]

d3r′,

(9)

H̃′(r, ω) = H̃i(r, ω)−
iω

c
Nα(ω)

∫

∇×

[

Ẽ′(r′, ω)
eiωR/c

R

]

d3r′.

(10)

Let Σ denote the closed boundary surface of the dielectric body occupying the region
D ∈ R3. For any observation point r ∈ D inside the dielectric, Eqs. (6) and (9) may
be combined to yield the relation

P̃(r, ω) = Nα(ω)
[

Ẽi(r, ω) + Ẽd(r, ω)
]

, (11)

where

Ẽd(r, ω) ≡

∫

D−D∆

∇×∇×

[

P̃(r′, ω)
eiωR/c

R

]

d3r′ (12)

denotes the contribution from the molecular dipoles in the dielectric bodyD excluding
the small region D∆ about the observation (or field) point r. The electric field vector

E′(r, t) = Ei(r, t) + Ed(r, t) (13)

acting on the molecular dipoles in the interior of the dielectric body may then be
obtained from the inverse Fourier transform of the expression [cf. Eq. (6)]

Ẽ′(r, ω) =
1

Nα(ω)
P̃(r, ω). (14)

The solution then depends upon the particular form of the macroscopic polarization
density P(r, t). For example, for the nondispersive case the dipole moment density is
taken to satisfy the homogeneous wave equation ∇2P(r, t)− (n2/c2)∂2P(r, t)/∂t2 = 0

where the constant n is an unknown quantity that is to be determined [16, 17].

For a Lorentz model dielectric, the macroscopic polarization density P(r, t) is derived
form the microscopic equation of motion

me

(
s̈j + 2δṡj + ω2

0sj
)
= −qeE

′

j(r, t), (15)

where me is the mass of the electron and qe the magnitude of the electronic charge,
E′

j(r, t) being identified as the effective local electric field intensity acting on the jth

molecular dipole as driving force (compare the definition of the field vectors E′

j(r, t)
and H′

j(r, t) in Eqs. (1) and (2) here with Eq. (4.200) of [8]). The additional force (in
cgs units) −qe(ṡj/c)×B′

j(r, t), arising from the interaction of the moving charge with
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the effective local magnetic field, is assumed here to be negligible in comparison to the
electric field interaction (due to the smallness of the magnitude of this charge velocity
in comparison with the vacuum speed of light c), as described in [23]. Here ω0 is the
undamped resonance frequency, and δ is the associated phenomenological damping
constant of the microscopic oscillator. The same dynamical equation of motion also
applies to molecular vibration modes when me is replaced by the ionic mass and ω0

is the undamped resonance frequency of the transverse vibrational mode of the ionic
lattice structure [24].

The temporal frequency transform of Eq. (15) directly yields the frequency domain
solution

s̃j(r, ω) =
qe/me

ω2 − ω2
0 + 2iδω

Ẽ′

j(r, ω), (16)

so that the locally induced dipole moment p̃j(r, ω) = −qes̃j(r, ω) of the j
th molecular

dipole is given by
p̃j(r, ω) = α(ω)Ẽ′

j(r, ω), (17)

where

α(ω) =
−q2e/me

ω2 − ω2
0 + 2iδω

(18)

is the mean molecular polarizability. The macroscopic polarization density is then
given by the spatial average2 of the locally induced (microscopic) dipole moments as

P̃(r, ω) = N〈〈p̃j(r, ω)〉〉 = Nα(ω)〈〈Ẽ′

j(r, ω)〉〉. (19)

With the identification that

Ẽ′(r, ω) = 〈〈Ẽ′

j(r, ω)〉〉, (20)

the expression in Eq. (19) reduces to that given in Eq. (6), viz.

P̃(r, ω) = Nα(ω)Ẽ′(r, ω). (21)

Following the analytical tack taken by Lalor and Wolf in [16], it is now assumed that
this polarization density satisfies the Helmholtz equation

(
∇2 + n2(ω)k2

0

)
P̃(r, ω) = 0, (22)

where k0 ≡ ω/c denotes the wave number in vacuum, and where the complex-valued
quantity n(ω) remains to be determined. As a trial solution, let [16]

P̃(r, ω) ≡
(
n2(ω)− 1

)
k2
0Q̃(r, ω). (23)

2The definition of the spatial average of a given quantity ⋆, indicated by the double angle bracket
notation 〈〈⋆〉〉, may be found in §4.1.1 of Ref. [8].
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The spectral quantity Q̃(r, ω) then satisfies the same vector Helmholtz equation

(
∇2 + n2(ω)k2

0

)
Q̃(r, ω) = 0 (24)

as does the polarization density. The complex wave field Q̃(r, ω) then “travels” in the
dielectric body with the complex phase velocity c/n(ω). In addition, it is assumed
that Q̃(r, ω) has no sources3 inside the medium, so that

∇ · Q̃(r, ω) = 0 (25)

for all r ∈ D. Combination of Eqs. (11) and (23) then gives

Q̃(r, ω) = Nα(ω)

{

1

(n2(ω)− 1) k2
0

Ẽi(r, ω)

+

∫

D−D∆

∇×∇×
[

Q̃)r′, ω)G(R, ω)
]

d3r′

}

, (26)

where

G(R, ω) ≡
eiωR/c

R
(27)

is the free-space Green’s function with R = |r− r′|. With the definition [16]

Ãd(r, ω) ≡

∫

D−D∆

∇×∇×
[

Q̃(r′, ω)G(R, ω)
]

d3r′, (28)

the relation in Eq. (26) may be expressed in a more compact form as

Q̃(r, ω) = Nα(ω)

{

1

(n2(ω)− 1) k2
0

Ẽi(r, ω) + Ãd(r, ω)

}

. (29)

Notice that the mathematical form of the spectral field quantity Ãd(r, ω) is precisely
that obtained in the classical description of molecular optics [16], which was derived
for a monochromatic wave field.

As the radius of the small spherical region D∆ surrounding the observation point r

shrinks to zero, the integral appearing in Eq. (28) becomes (see Appendix V of Born
and Wolf [17])

∫

D−D∆

∇×∇×
[

Q̃(r′, ω)G(R, ω)
]

d3r′ = ∇×∇×

∫

D−D∆

Q̃(r′, ω)G(R, ω)d3r′−
8π

3
Q̃(r, ω).

(30)

3Note that this macroscopic polarization density is derived from the spatial average of the mi-
croscopic dipoles induced by the local effective electric field.
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Because the free-space Green’s function G(R, ω) describes a monochromatic spherical
wave of angular frequency ω and wave number k0 = ω/c in free-space, it then satisfies
Helmholtz’ equation

(
∇2 + k2

0

)
G(R, ω) = 0 (31)

in the region D −D∆. From Eqs. (24) and (31) one finds that

Q̃G =
1

(n2 − 1)k2
0

(

Q̃∇2G−G∇2Q̃
)

, (32)

so that, with application of Green’s theorem, the volume integral appearing on the
right-hand side of Eq. (30) becomes

∫

D−D∆

Q̃(r′, ω)G(R, ω)d3r′ =
1

(n2 − 1)k2
0

∫

D−D∆

(

Q̃∇2G−G∇2Q̃
)

d3r′

=
1

(n2 − 1)k2
0

{
∮

S

(

Q̃
∂G

∂n′
−G

∂Q̃

∂n′

)

d2r′

−

∮

∆

(

Q̃
∂G

∂R
−G

∂Q̃

∂R

)

d2r′

}

, (33)

where ∂/∂n′ denotes differentiation along the outward normal n′ [not to be confused
with the complex index of refraction n = n(ω)] to the boundary surface of the region
D −D∆. Notice that a minus sign appears in the second surface integral of Eq. (33)
because ∂/∂R is the inner directed normal derivative to the spherical surface D∆.
The evaluation of the limit of this inner surface integral over the spherical region
D∆ as its radius R approaches zero closely follows that given in the derivation of the
integral theorem of Helmholtz and Kirchhoff (see, for example, §8.3.1 of Born and
Wolf [17]) with the result

∮

∆

(

Q̃
∂G

∂R
−G

∂Q̃

∂R

)

d2r′ = −4πQ̃(r). (34)

With this substitution, Eq. (33) becomes

∫

D

Q̃(r′, ω)G(R, ω)d3r′ =
1

(n2 − 1)k2
0

{
∮

S

(

Q̃
∂G

∂n′
−G

∂Q̃

∂n′

)

d2r′ + 4πQ̃(r)

}

. (35)

Substitution of Eqs. (30) and (35) into Eq. (28) then gives

Ãd(r, ω) =
1

(n2 − 1) k2
0

{

4π∇×∇× Q̃(r, ω) +∇×∇×

∮

S

(

Q̃
∂G

∂n′
−G

∂Q̃

∂n′

)

d2r′

}

−
8π

3
Q̃(r, ω). (36)
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Because Q̃(r, ω) is solenoidal [see Eq. (25)], then, together with Eq. (24) it is found
that

∇×∇× Q̃(r, ω) = ∇
(

∇ · Q̃(r, ω)
)

−∇2Q̃(r, ω) = n2(ω)k2
0Q̃(r, ω), (37)

and Eq. (36) becomes

Ãd(r, ω) =
4π

3

(
n2 + 2

n2 − 1

)

Q̃(r, ω) +
1

(n2 − 1) k2
0

∇×∇×

∮

S

(

Q̃
∂G

∂n′
−G

∂Q̃

∂n′

)

d2r′.

(38)
Substitution of this expression into Eq. (29) then gives

[

1−
4π

3

(
n2(ω) + 2

n2(ω)− 1

)

Nα(ω)

]

Q̃(r, ω)

=
Nα(ω)

(n2(ω)− 1) k2
0

{

Ẽi(r, ω) +∇×∇×

∮

S

(

Q̃
∂G

∂n′
−G

∂Q̃

∂n′

)

d2r′

}

.

(39)

Because the left-hand side of this equation describes a monochromatic electromagnetic
wave with complex phase velocity c/n(ω), whereas the right-hand side describes a
wave that propagates with the velocity c, each side must then separately vanish.
Thus

4π

3
Nα(ω) =

n2(ω)− 1

n2(ω) + 2
(40)

which is known either as the Lorentz-Lorenz relation [25, 26] or the Clausius-Mossotti
relation [27, 28], and

Ẽi(r, ω) +∇×∇×

∮

S

(

Q̃
∂G

∂n′
−G

∂Q̃

∂n′

)

d2r′ = 0 (41)

which is known as the Ewald-Oseen extinction theorem [29, 30]. Because the Lorentz-
Lorenz relation (40) may also be derived from a separate line of analysis (see, for
example, §4.4.1 of [8]), the Ewalf-Oseen extinction theorem may also be viewed as a
consequence of it as applied to Eq. (39).

The relation given in Eq. (41) expresses the extinction of the incident spectral wave
field component Ẽi(r, ω) at any point within the dielectric body through destructive
interference with part of the induced dipole wave field. Notice that Eq. (41) states
that the extinction of this incident wave field is brought about entirely by the dipoles
on the boundary surface of the dielectric body.4 The extinguished incident spectral

4This result is entirely consistent with the boundary conditions for the electric and magnetic field
vectors at an interface S that are derived from the macroscopic Maxwell’s field equations.
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wave field at the frequency ω is then replaced by the spectral wave field at the same
frequency ω that is given by [see Eqs. (13) and (11)]

Ẽ′(r, ω) = Ẽi(r, ω) + Ẽd(r, ω) =
1

Nα(ω)
P̃(r, ω). (42)

With substitution from Eq. (23) and the Lorentz-Lorenz relation (40), this frequency-
domain expression for the electric field vector acting on the molecular dipoles in the
dielectric body becomes

Ẽ′(r, ω) =
1

Nα(ω)

(
n2(ω)− 1

)
k2
0Q̃(r, ω)

=
4π

3

(
n2(ω) + 2

) ω2

c2
Q̃(r, ω). (43)

which “propagates” inside the dielectric body with the complex phase velocity

vp ≡
c

n(ω)
. (44)

In terms of the macroscopic polarization vector P̃(r, ω), this expression becomes

Ẽ′(r, ω) =
4π

3

n2(ω) + 2

n2(ω)− 1
P̃(r, ω), (45)

where P̃(r, ω) satisfies the Helmholtz equation (22).

Finally, because D̃(r, ω) = n2(ω)Ẽ(r, ω) in a homogeneous, isotropic, locally linear,
nonmagnetic medium, and D̃(r, ω) = Ẽ(r, ω) + 4πP̃(r, ω) in a simple polarizable di-
electric, then the elimination of the macroscopic electric displacement vector spectrum
from these two expressions yields

Ẽ(r, ω) =
4π

n2(ω)− 1
P̃(r, ω). (46)

With Eq. (45) rewritten as

Ẽ′(r, ω) =
4π

n2(ω)− 1
P̃(r, ω) +

4π

3
P̃(r, ω), (47)

comparison with Eq. (46) then shows that the effective field acting on the molecular
dipoles in the dielectric body is given by the well-known expression

E′(r, t) = E(r, t) +
4π

3
P(r, t) (48)

after a straightforward Fourier inversion into the space-time domain.

10



2.2 Precursor Field Formation in the Immature Dispersion

Regime

Based upon the analytical formulation of dispersive molecular optics presented in §2.1,
the time-domain development of the precursor fields due to an incident ultrawideband
plane wave pulse may now be carefully investigated. Associated with this problem
is the correct physical description of dispersive pulse propagation in the immature
dispersion regime where the precursor formation occurs. Although it is generally
asserted that the group velocity description provides this near-field description, the
research conducted during this grant period has shown that this is not in general true.

2.2.1 Molecular Optics Formulation

Consider a linearly polarized plane wave pulse that is normally incident upon a dis-
persive dielectric filling the positive half space z > 0. Let the scalar field behavior of
this incident pulse be described by Ei(0−, t) = E0f(t) where E0 is a constant and f(t)
describes the temporal structure of the pulsed wave field. The macroscopic electric
field intensity at any penetration distance z ≥ 0 inside the dielectric half-space in
then given by

Ẽ(z, ω) =
2

1 + n(ω)
E0f̃(ω)e

ik̃(ω)z , (49)

where the factor 2/(1 + n(ω)) is the Fresnel transmission coefficient [17] for normal
incidence,

k̃(ω) ≡
c

ω
n(ω) (50)

is the complex wave number in the dispersive dielectric at the frequency ω, and where

f̃(ω) =

∫
∞

−∞

f(t)eiωtdt (51)

is the Fourier-Laplace spectrum [7, 8] of the initial pulse waveform. The spectrum of
the induced macroscopic polarization is then obtained from Eq. (46) as

P̃ (z, ω) =
1

2π

(
n(ω)− 1

)
E0f̃(ω)e

ik̃(ω)z (52)

for all z > 0, and the spectrum of the electric field acting on the molecular dipoles in
the interior of the dielectric half-space is obtained from Eq. (45) as

Ẽ ′(z, ω) =
2

3

n2(ω) + 2

n(ω) + 1
E0f̃(ω)e

ik̃(ω)z (53)

11



for all z > 0. Finally, the temporal frequency spectrum of the dipole field in the
dielectric half-space z > 0 is obtained from Eqs. (13) and (53) as

Ẽd(z, ω) =
2

3

n2(ω) + 2

n(ω) + 1
E0f̃(ω)e

ik̃(ω)z −E0f̃(ω)e
ik0z (54)

where k0 = ω/c is the wave number in vacuum. Because k̃(ω) − k0 = ω
c
(n(ω) − 1),

this expression can be written in more compact form as

Ẽd(z, ω) =

[
2

3

n2(ω) + 2

n(ω) + 1
ei

ω

c
(n(ω)−1)z − 1

]

E0f̃(ω)e
iω
c
z. (55)

From Eqs. (42) and (48), the propagated plane wave field in the dispersive dielectric
occupying the half-space z > 0 may be expressed as

E(z, t) = Ei(z, t) + Ed(z, t)−
4π

3
P (z, t) (56)

This formulation will then reveal the origin of the precursor fields through the in-
teraction of the dipole field Ed(z, t) with the incident field Ei(z, t) and the induced
polarization field P (z, t). This comprises a major part of my future research focus.

2.2.2 Energy and Group Velocity Descriptions

Both the energy and group velocity descriptions of dispersive pulse dynamics are
based on (or derived from) the exact Fourier-Laplace integral representation of plane
wave pulse propagation [1, 2, 7, 8]

A(z, t) =
1

2π

∫

C

f̃(ω)e
z

c
φ(ω,θ)dω, (57)

where A(0, t) = f(t) describes the initial pulse at z = 0 with spectrum

f̃(ω) =

∫
∞

−∞

f(t)eiωtdt. (58)

The complex phase function φ(ω, θ) appearing in Eq. (57) is given by

φ(ω, θ) ≡ i
c

z

[

k̃(ω)z − ωt
]

= iω[n(ω)− θ], (59)

where
k̃(ω) = β(ω) + iα(ω) ≡

ω

c
n(ω) (60)
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is the complex wavenumber of the electromagnetic wave in a dispersive nonmagnetic
medium characterized by the complex index of refraction n(ω) = [ǫc(ω)/ǫ0]

1/2, and
where

θ ≡ ct/z (61)

is a dimensionless space-time parameter defined for all z > 0. If the complex index
of refraction is described by a causal model, then Sommerfeld’s relativistic causality
theorem [1] applies, which states that [7, 9] if A(0, t) = 0 ∀ t < 0, then A(z, t) =
0 ∀ z > 0 when ct/z < 1, in agreement with the special theory of relativity. Physically
meaningful examples of such causally dispersive medium models include the single
relaxation time τ Debye-model dielectric

ǫ(ω)/ǫ0 = ǫ∞ +
ǫsr − ǫ∞
1− iωτ

, (62)

with ǫ∞ ≥ 1 and ǫsr ≡ ǫ(0)/ǫ0, the single resonance frequency ω0 Lorentz-model
dielectric

ǫ(ω)/ǫ0 = 1−
b2

ω2 − ω2
0 + 2iδω

(63)

with b2 ≡ Nq2e/me the square of the plasma frequency with number density N and
with damping constant δ ≥ 0, and the Drude model conductor

ǫc(ω)/ǫ01−
ω2
p

ω(ω + iγ)
(64)

with ω2
p ≡ Nq2e/me and with damping constant γ = 1/τc given by the inverse of the

relaxation time τc associated with the mean-free for free electrons in the material.

With application of the saddle point method of analysis, the mathematical formula-
tion given in Eqs. (57)–(60) leads to the uniform asymptotic representations [9] (for
θ ≥ 1)

A(z, t) ∼ Ab(z, t) + Ac(z, t) (65)

as z → ∞ for Debye-type dielectrics,

A(z, t) ∼ As(z, t) + Am(z, t) + Ab(z, t) + Ac(z, t) (66)

as z → ∞ for Lorentz-type dielectrics, and

A(z, t) ∼ As(z, t) + Ab(z, t) + Ac(z, t) (67)

as z → ∞ for Drude-model conductors. Here As(z, t) describes the first or Sommerfeld
precursor wave whose dynamical evolution is described by the space-time evolution
of the distant saddle points of φ(ω, θ) that appear in both Lorentz-model dielectrics
and Drude-model conductors, Ab(z, t) describes the second or Brillouin precursor
wave whose dynamical evolution is described by the space-time evolution of the near

13



saddle points of φ(ω, θ) that appear in both Debye- and Lorentz model dielectrics as
well as in Drude-model conductors, and Ac(z, t) describes the signal contribution (if
any). Uniform asymptotic descriptions of the Sommerfeld precursor have been given
by Oughstun and Sherman [6, 7, 9] for Lorentz-model dielectrics and by Cartwright
and Oughstun [31, 9] for Drude-model conductors. Uniform asymptotic descriptions
of the Brillouin precursor have been given by Oughstun and Sherman [6, 7, 9] and
by Cartwright and Oughstun [10] for Lorentz-model dielectrics, by Cartwright and
Oughstun [31, 9] for Drude-model conductors, and by Oughstun [32] for Debye-model
dielectrics. Finally, uniform asymptotic descriptions of the signal arrival and evolution
have been given by Cartwright and Oughstun [10].
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Figure 1. Dynamical evolution of a Heaviside step-function signal in (left) a Lorentz
model dielectric (with below resonance carrier frequency ωc < ω0) and (right) a

Debye model dielectric.

A comparison of the numerically determined field evolution due to a Heaviside unit
step-function signal

A(0, t) = fH(t) ≡ uH(t) sin (ωct) (68)

where uH(t) = 0 for t < 0 and uH(t) = 1 for t > 0 with constant carrier frequency ωc

is given in Fig. 1 for Lorentz- and Debye-model dielectrics at 1, 3, and 5 absorption
depths zd [where zd ≡ α−1(ωc)] shows the difference between the two precursor field
structures in these two dispersive medium types. The high-frequency Sommerfeld
precursor evolution is clearly visible immediately following the propagated wave front
(traveling at the vacuum speed of light c) in the Lorentz-model dielectric which is
then followed by the low-frequency Brillouin precursor evolution and then the main
signal evolution at the input signal carrier frequency ωc, as described by Eq. (66)
with Am(z, t) = 0.5 The observed asymmetry in both the Sommerfeld and Brillouin

5Because the propagation is in a single resonance Lorentz medium, the middle precursor field
Am(z, t) is not present in the propagated field evolution.
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precursor field evolutions is characteristic of the saddle point evolution in a Lorentz
medium, as described in [5, 7, 9]. By comparison, the Sommerfeld precursor is com-
pletely absent from the dynamical field evolution in a Debye-model dielectric. In
that case the propagated field evolution begins with the Brillouin precursor which
is then followed by the main signal evolution at the input signal carrier frequency
ωc, as described by Eq. (65). Notice that the Brillouin precursor evolution is nearly
symmetric about its peak amplitude point in this case, a characteristic of the saddle
point evolution in a Debye medium, as described in [32, 8]. In both the Lorentz- and
Debye-model cases, the peak amplitude of the Brillouin precursor only decays alge-
braically as z−1/2 (except in the singular dispersion limit described below), this peak
amplitude point occurring at the space-time point θ = θ0 ≡ n(0). The accuracy of the
uniform asymptotic description in describing each feature in this type of dispersive
pulse propagation phenomena is without peer.

One of the main criticism of this asymptotic theory is that it relies upon absorption
and so cannot be applied to the optical domain where the materials (optical quality
glass, etc.) are weakly dispersive and the group velocity description supposedly ap-
plies. The material absorption in a Lorentz medium (which is entirely appropriate for
the description of the material dispersion in the optical region of the electromagnetic
spectrum), described by the attenuation coefficient α(ω) = (ω/c)ni(ω) for real ω,
decreases when either δ → 0 or when N → 0. This then leads to the following two
limiting cases:

• Singular Dispersion Limit: In the singular dispersion limit the frequency dis-
persion of n(ω) becomes increasingly localized about the resonance frequency
ω0 as δ → 0. The term “singular” is used here in the mathematical sense that
n(ω) fails to be well-behaved at a point in some well-defined manner, in this
case in terms of its differentiability at ω = ω0. All of the material dispersion
and loss is then concentrated at the resonance frequency.

• Weak Dispersion Limit: In the weak dispersion limit the absorption coefficient
α(ω) vanishes while the material dispersion nr(ω) approaches unity at all fre-
quencies ω as the molecular number density N → 0. In this limit, dn(ω)/dω → 0
as N → 0, in agreement with the group velocity interpretation of weak material
dispersion.

The recent extension and verification of the asymptotic theory to both the singular
and weak dispersion cases has shown that [22]:

• the peak amplitude decay of the Brillouin precursor changes from z−1/2 to z−1/3

in the singular dispersion limit as δ → 0, as illustrated in Fig. 2, and that

15



0 20 40 60 80 100
10

-3

10
-2

10
-1

10
 0

P
e

a
k
 A

m
p

lit
u

d
e

 o
f 

th
e

 B
ri
llo

u
in

 P
re

c
u

rs
o

r

z/z
d

d
0
 = 3.02 X 10

13
r/s

d = 0.1 d
0

d = 0.01 d
0

d = 0.001 d
0

0 20 40 60 80 100
-1

-0.5

0

z/z
d

A
v
e

ra
g

e
 S

lo
p

e
 o

f 
th

e
 L

o
g

a
ri
th

m

  
 o

f 
th

e
 P

e
a

k
 A

m
p

lit
u

d
e

 D
a

ta

δ
0
 = 3.02 X 10

13
r/s

δ = 0.1 δ
0

δ = 0.01 δ
0

δ = 0.001 δ
0

X -1/2 

X -1/3

Figure 2. Numerically determined peak amplitude decay (left) and slope of the peak
amplitude decay (right) in a Lorentz model dielectric in the singular dispersion limit

as δ → 0.

• a simple scaling relation between strong and weak dispersion cases is given by

z2 ≈
N1

N2

z1 & t2 ≈ t1 +

(
N1

N2

− 1

)
z1
c
, (69)

the accuracy of this result increasing as N1, N2 → 0 with N2 > N1.

Most importantly, these results prove that the precursor fields persist in both the
singular and weak dispersion limits where the group velocity description supposedly
holds.

The energy velocity description [11, 12, 7, 9] directly follows from the asymptotic
description and shows that the propagated wave field is dominated by a single real
frequency ωE at each space-time point θ = ct/z for all z > 0. That frequency ωE is
the angular frequency of the time-harmonic wave with the least attenuation that has
energy velocity vE equal to z/t, so that

vE(ωE) =
z

t
(70)

where [13]

vE(ω) =
c

nr(ω) + ωni(ω)/δ
(71)

for a single resonance Lorentz-model dielectric. For comparison, the group velocity
in a Lorentz-model dielectric is given by

vg(ω) ≡
1

∂β/∂ω
=

c

nr(ω) + ωn′
r(ω)

(72)
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The question then arises regarding what conditions are required for vE(ω) → vg(ω),
or equivalently, when does ni(ω)/δ → n′

r(ω)?

For a single resonance Lorentz-model dielectric, the complex index of refraction
n(ω) = nr(ω) + ini(ω) is given by

n(ω) =

(

1−
b2

ω2 − ω2
0 + 2iδω

)1/2

(73)

with derivative

n′(ω) = b2
ω + iδ

n(ω) (ω2 − ω2
0 + 2iδω)

2 , (74)

where b2 ≡ Nq2e/me is the square of the plasma frequency with number density N .
In the singular dispersion limit as δ → 0,

n′

r(ω) →
b2ω

nr(ω) (ω2 − ω2
0)

2 , (75)

ni(ω) =

[
(ω2 − ω2

0)
2 − b2(ω2 − ω2

0) + 4δ2ω2

(ω2 − ω2
0)

2 + 4δ2ω2

]1/2

×
δb2ω

(ω2 − ω2
0)

2 − b2(ω2 − ω2
0) + 4δ2ω2

[
1 +O(δ2)

]

→ δ
b2ω

nr(ω)(ω2 − ω2
0)

2
, (76)

and the energy and group velocities are identical for all real ω. However, in the weak
dispersion limit as N → 0 (or equivalently as b2 → 0),

n(ω) → 1−
(b2/2)(ω2 − ω2

0)

(ω2 − ω2
0)

2 + 4δ2ω2

︸ ︷︷ ︸

nr(ω)

+i δ
b2ω

(ω2 − ω2
0)

2 + 4δ2ω2

︸ ︷︷ ︸

ni(ω)

, (77)

n′

r(ω) → −
b2ω

(ω2 − ω2
0)

2 + 4δ2ω2

︸ ︷︷ ︸

ni(ω)/δ

[

1− 2
1 + 2δ2/(ω2 − ω2

0)

1 + 4δ2ω2/(ω2 − ω2
0)

2

]

(78)

and the energy and group velocities are approximately the same when either ω ≪ ω0

or ω ≫ ω0, the approximation improving as δ → 0.

This analysis then casts doubt on the applicability of the group velocity method
to dispersive pulse propagation phenomena except in the singular dispersion limit.
A proper description of dispersive pulse propagation then needs to be developed in
the immature dispersion regime. Together with the closely related problem of the
molecular theory of precursor field formation, this forms the major focus of my future
research direction.
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3 Peer-Reviewed Research Presentations & Pub-

lications

The following peer-reviewed conference presentations were given during this grant
funding period:

1. N. A. Cartwright and K. E. Oughstun, “The Effect of Conductivity on the
Brillouin Precursor,” 2008 USNC/URSI National Radio Science Meeting, Uni-
versity of Colorado, Boulder, CO (2008).

2. N. A. Cartwright and K. E. Oughstun, “The Effect of Conductivity on the
Brillouin Precursor,” 2008 Progress in Electromagnetics Research Symposium
(PIERS 2008), Massachusetts Institute of Technology, Cambridge, MA (2008).

3. K. E. Oughstun, “Ultrawideband Pulse Propagation in Double-Resonance Lorentz
Model Dielectrics,” 2008 Progress in Electromagnetics Research Symposium
(PIERS 2008), Massachusetts Institute of Technology, Cambridge, MA (2008).

4. N. A. Cartwright and K. E. Oughstun, “Pulse Propagation in a Debye Medium
with Static Conductivity: The Search for a Uniform Expansion,” Special Session
on Asymptotic Methods in Analysis with Applications, American Mathematical
Society Annual Meeting, Washington, D.C. (2009).

5. K. E. Oughstun, “On the Use & Application of Precursor Waveforms,” 2009
13th International Symposium on Antenna Technology and Applied Electromag-
netics and the Canadian Radio Science Meeting (ANTEM/URSI 2009), Banff
Conference Centre, Banff, AB, Canada (2009).

6. K. E. Oughstun, “Dispersive Pulse Dynamics in the Few-Cycle Pulse Limit,”
(Invited Talk), Nonlinear Optics in Guided Geometries, Weierstrass Institute
for Applied Analysis and Stochastics, Berlin, Germany (2009).

7. K. E. Oughstun and N. A. Cartwright, “Brillouin Precursor Decay in Dispersive
Attenuative Materials,” 2009 IEEE International Symposium on Antennas and
Propagation and USNC/URSI National Radio Science Meeting, Charleston, SC
(2009).

8. N. A. Cartwright and K. E. Oughstun, “Pulse Propagation in a Debye Medium
with Static Conductivity,” 2009 IEEE International Symposium on Antennas
and Propagation and USNC/URSI National Radio Science Meeting, Charleston,
SC (2009).
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9. K. E. Oughstun, “Utility of the Brillouin Precursor in Debye-Type Dielectrics,”
2010 USNC/URSI National Radio Science Meeting, University of Colorado,
Boulder, CO (2010).

10. N. A. Cartwright and K. E. Oughstun, “Optical Precursors and the Group Ve-
locity Approximation,” 2010 IEEE AP-S International Symposium and USNC/
CNC/URSI National Radio Science Meeting, Toronto, Canada (2010).

11. K. E. Oughstun, “Beer’s Law and the Unique Penetration Properties of the
Brillouin Precursor in Complex Media,” 2010 IEEE AP-S International Sympo-
sium and USNC/CNC/URSI National Radio Science Meeting, Toronto, Canada
(2010).

The following peer-reviewed conference publications appeared during this grant fund-
ing period:

1. K. E. Oughstun, “On the Use & Application of Precursor Waveforms,” Pro-
ceedings of the 2009 13th International Symposium on Antenna Technology
and Applied Electromagnetics and the Canadian Radio Science Meeting (AN-
TEM/URSI 2009), pp. TP1:1–4 (2009).

2. K. E. Oughstun and N. A. Cartwright, “Brillouin Precursor Decay in Dispersive
Attenuative Materials,” Proceedings of the 2009 IEEE International Symposium
on Antennas and Propagation and USNC/URSI National Radio Science Meet-
ing, paper #528.5 (2009).

3. N. A. Cartwright and K. E. Oughstun, “Pulse Propagation in a Debye Medium
with Static Conductivity,” Proceedings of the 2009 IEEE International Sympo-
sium on Antennas and Propagation and USNC/URSI National Radio Science
Meeting, paper #330.1 (2009).

4. K. E. Oughstun, “Beer’s Law and the Unique Penetration Properties of the Bril-
louin Precursor in Complex Media,” Proceedings of the 2010 IEEE AP-S Inter-
national Symposium and USNC/CNC/URSI National Radio Science Meeting,
paper #425.5 (2010).

The following peer-reviewed journal publications appeared during this grant funding
period:

1. N. A. Cartwright and K. E. Oughstun, “Ultrawideband Pulse Propagation
through a Homogeneous, Isotropic, Lossy Plasma,” Radio Science 44, RS4013–
RS4024 (2009).
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2. C. L. Palombini and K. E. Oughstun, “Optical Precursor Fields in Nonlinear
Pulse Dynamics,” Optics Express 18, 22, 23104–23120 (2010).

3. K. E. Oughstun, N. A. Cartwright, D. J. Gauthier, and H. Jeong, “Optical
Precursors in the Singular and Weak Dispersion Limits,” Journal of the Optical
Society of America B 27, 8, 1664–1670 (2010).

4. K. E. Oughstun, N. A. Cartwright, D. J. Gauthier, and H. Jeong, “Optical
Precursors in the Singular and Weak Dispersion Limits: Reply to Comment,”
Journal of the Optical Society of America B 28, 3, 468–470 (2011).

In addition, the following research monograph was also published:

K. E. Oughstun, Electromagnetic & Optical Pulse Propagation. Volume 2: Temporal
Pulse Dynamics in Dispersive, Attenuative Media, Springer Series in Optical Sciences
(Springer, New York, 2009).

Finally, the following seminar and workshop presentations were given during this
funding period:

1. “The Effect of Conductivity on the Brillouin Precursor,” 19th Annual AFOSR
Electromagnetics Workshop, San Antonio, TX (January 8–10, 2008).

2. “On the Use & Application of Precursor Waveforms,” 20th Annual AFOSR
Electromagnetics Workshop, San Antonio, TX (January 6–8, 2009).

3. “Dispersive Pulse Propagation: History, Theory, & Applications,” Engineering
Seminar, University of Toronto (February 12, 2009).

4. “Dispersive Pulse Propagation: History, Theory, & Applications,” Department
of Physics Seminar, Naval Postgraduate School, Monterey, CA (March 27,
2009).

5. “Precursor Field Behavior: Final Thoughts,” 21st Annual AFOSR Electromag-
netics Workshop, San Antonio, TX (January 5–7, 2010).

6. “Precursor Wave Fields: The Characteristic Wave Structure of Dispersive At-
tenuative Media,” Institute of Optics Colloquium, The Institute of Optics, The
University of Rochester (April 12, 2010).

7. “Multus Tumultus de Nihilo,” 22nd Annual AFOSR Electromagnetics Work-
shop, San Antonio, TX (January 4–6, 2010).

The Latin phrase “Multus Tumultus de Nihilo” used as the title in this last workshop
presentation was a reflection on the “Reply to Comment” paper listed above that
formed the focus of this presentation.
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